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Abstract
Many tropical plant species show wide intra-population variation in reproductive tim-
ing, resulting in the protracted presence of flowering and fruiting individuals. Various 
eco-evolutionary drivers have been proposed as ultimate causes for asynchronous 
phenology, yet little is known about the proximate factors that control reproduc-
tive onset among individuals or that influence the proportion of trees producing new 
inflorescences within a population. We employed a nine-year phenological record 
from 178 individuals of the hyperdominant, asynchronously flowering canopy palm, 
Oenocarpus bataua (Arecaceae)̧  to assess whether resource-related variables influ-
ence individual- and population-level flowering phenology. Among individuals, ac-
cess to sunlight increased rates of inflorescence production, while the presence of 
resource sinks related to current investment in reproduction—developing infructes-
cences—reduced the probability of producing new inflorescences. At the population 
level, climate anomalies induced by El Niño Southern Oscillation (ENSO) affected 
the proportion of the population producing inflorescences through time. Moreover, 
the effects of ENSO anomalies on flowering patterns depended on the prevalence 
of developing infructescences in the population, with stronger effects in periods of 
low developing-infructescence frequency. Taken together, these results suggest that 
resource-related variables can drive phenological differences among individuals and 
mediate population-level responses to larger-scale variables, such as climate anoma-
lies. Consequently, a greater focus on the role of resource levels as endogenous cues 
for reproduction might help explain the frequent aseasonal phenological patterns 
observed among tropical plants, particularly those showing high intra-population 
asynchrony.

Abstract in Spanish is available with online material.
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1  | INTRODUC TION

The tropics harbor a great diversity of plant species that do not re-
spond to seasonal climate and photoperiod as flowering cues. For 
example, some dominant tropical plant taxa exhibit mass flowering 
and fruiting patterns of irregular, supra-annual periodicity (i.e., mast-
ing) (Appanah, 1985, 1993). Other species reproduce several times 
a year at irregular time intervals that do not match seasonality in 
climate nor photoperiod (Bullock, Beach, & Bawa, 1983; Medway, 
1972; Newstrom Frankie, & Baker, 1994a; Newstrom, Frankie, Baker, 
& Colwell, 1994b). Another common tropical phenological pattern is 
that of intra-population reproductive asynchrony, characterized by 
wide variation in reproductive rates and timing among individuals 
(Janzen, 1979). Asynchronously reproducing species are frequent in 
many communities (Hamman, 2004; Newstrom et al., 1994a, 1994b) 
and play important ecological roles within ecosystems, as the pro-
tracted presence of flowering and fruiting individuals can provide 
keystone plant resources to animals (Lambert & Marshall, 1991, 
Diaz-Martin, Swamy, Terborgh, Alvarez-Loayza, & Cornejo, 2014). 
While some tropical taxa use climatic conditions occurring sub- 
and inter-annually to cue reproduction in synchronous flowering 
events (e.g., Augspurger, 1983; Sakai et al., 2006; Wright, Calderón, 
& Muller-Landau, 2019), the proximate factors generating the wide 
variation in phenology among individuals of asynchronous species 
and the drivers of their population-level reproductive patterns re-
main unresolved. Identifying these proximate drivers would improve 
our ability to forecast temporal fluctuations in flower and fruit abun-
dance in rain forest ecosystems and the aggregate responses of 
tropical plant communities to climate change.

Variation in resource acquisition and allocation may mediate 
reproductive asynchrony. Flower production and fruit production 
impose significant carbon and inorganic nutrient costs for most 
plants, requiring the allocation of current assimilates or depletion of 
stored reserves (Obeso, 2002; Reekie & Bazzaz, 1987; Stephenson, 
1981). Some plants produce reproductive biomass in proportion to 
available resources (i.e., resource tracking, Fenner, 1998), but others 
may initiate flowering only after reaching threshold resource levels. 
Accordingly, some species halt flowering, sometimes for several 
seasons, following resource depletion in high seeding years (Crone, 
Miller, & Sala, 2009; Crone & Rapp, 2014; Miyazaki, Osawa, & 
Waguchi, 2009). Furthermore, molecular studies have demonstrated 
that resource levels play important roles as endogenous signals for 
reproductive development (Lastdrager, Hanson, & Smeekens, 2014; 
Ruan, 2014; Wahl et al., 2013). These observations suggest that in-
dividuals might initiate reproduction in response to endogenous fac-
tors signaling sufficient resources for flowering and fruiting (Isagi, 
Sugimura, Sumida, & Ito, 1997; Satake & Iwasa, 2000). If so, we 
would predict individual-level factors affecting resource acquisition, 
allocation and storage to cause variation in phenology.

Individual-level factors known to affect resource assimilation 
and allocation also influence plant phenological behavior (e.g., 
García León, Martínez Izquierdo, Mello, Powers, & Schnitzer, 2018; 
Martínez-Ramos, Anten, & Ackerly, 2009; Poorter et al., 2019; 

Visser et al., 2016). Among them, access to sunlight and size appear 
to play predominant roles in natural populations. Sunlight expo-
sure increases photosynthetic rates, even in shade-tolerant species 
(Amadeu, Sampaio, & Santos, 2016; Chazdon & Pearcy, 1991), af-
fecting the probability and timing of flowering, reproductive effort, 
crop sizes, fruit and flower abscission rates, and sex expression 
(Cai, 2011; Lorenzo et al., 2019; Poorter et al., 2019; Stephenson, 
1981; Tucker-Lima, Caruso, Clugston, & Kainer, 2018). Additionally, 
resource allocation is often size-dependent (allometric), with larger 
plants directing a greater proportion of available resources to re-
production than smaller ones (Bonser & Aarssen, 2009; Tucker-Lima 
et al., 2018; Visser et al., 2016; Weiner, Campbell, Pino, & Echarte, 
2009).

At the population level, researchers have emphasized the role 
of climate as a cue that synchronizes flowering among conspecif-
ics (Mendoza, Peres, & Morellato, 2017; Rathcke & Lacey, 1985; 
Wright & van Schaik, 1994). However, climate also determines re-
source availability, either directly by mediating the supply of abiotic 
resources (e.g., water, sunlight) or indirectly through its influence 
on biotic processes that modify available resource pools (e.g., pri-
mary productivity, mycorrhizal function, and microbial activity) 
(Fernández-Martínez, Vicca, Janssens, Espelta, & Peñuelas, 2017; 
Högberg et al., 2010; Orwin et al., 2015; Richardson et al., 2005; 
Yang, Bastow, Spence, & Wright, 2008). In tropical rain forests, 
heavier rainfall at the end of the dry season may increase litterfall 
(Martínez-Yrízar & Sarukhán, 1990), greater cloud cover can de-
crease primary productivity (Graham, Mulkey, Kitajima, Phillips, & 
Wright, 2003), and higher temperatures can lead to greater soil nitri-
fication and mineralization (Breuer, Kiese, & Butterbach-Bahl, 2002). 
Therefore, the climate can also influence plant phenology through 
its effect on resource budgets (Allen, Millard, & Richardson, 2017; 
Crone & Rapp, 2014; Satake & Iwasa, 2000).

Anomalies in El Niño Southern Oscillation (ENSO) generate 
dramatic examples of such associations. ENSO is an irregular fluc-
tuation between warm and cold conditions in the tropical Pacific 
(El Niño/La Niña events respectively) that is responsible for the 
strongest patterns of inter-annual climate variation on Earth 
(McPhaden, Zebiak, & Glantz, 2006). El Niño events have been 
associated with forest-wide increases in net primary productivity 
(Asner, Townsend, & Braswell, 2000; Rifai et al., 2018), massive 
flowering and fruiting events (Chang-Yang, Sun, Tsai, Lu, & Hsieh, 
2016; Chapman, Valenta, Bonnell, Brown, & Chapman, 2018; 
Wright & Calderón, 2006), and subsequent decreases in fruit 
production that can result in widespread frugivore famine under 
aggravating drought conditions (Wright, Carrasco, Calderón, & 
Paton, 1999). Consequently, through their effects on resource 
supply, ENSO-induced climate anomalies could affect the propor-
tion of trees in a population having enough resources to initiate 
new inflorescences.

In this study, we use a 9-year phenological record from 178 indi-
viduals of the asynchronously reproducing palm Oenocarpus bataua 
(Arecaceae) to evaluate the influence of various factors on indi-
vidual- and population-level flowering phenology. At the individual 
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level, we (a) evaluate the effects of crown emergence through the 
forest canopy and tree height on inflorescence production among 
trees. If resource-related cues induced flowering, individual-level 
reproduction should be unconstrained or weakly constrained by 
the mild climate seasonality of the wet tropics within a year. Thus, 
we (b) evaluate whether individual-level inflorescence production 
tends to concentrate during certain months of the year. O. bataua 
can produce new inflorescences while bearing infructescences 
with developing fruits whose size, abundance, and high nutritional 
content upon ripening impose significant resource sinks on individ-
ual palms (Henderson, 1995). Therefore, we (c) evaluate whether 
the presence of developing fruits on individual trees affects the 
probability of producing new inflorescences. At the population 
level, we (d) characterize population-level phenology by comput-
ing the proportion of trees in different stages of their reproductive 
cycle (phenophases) throughout the study period. We then use this 
information to (e) assess whether ENSO-induced climate anoma-
lies affect the proportion of individuals in the population initiating 
new inflorescences. Furthermore, if developing infructescences 
represent resource sinks that reduce the probability of inflores-
cence production at the individual level, their prevalence among 
individuals may affect the magnitude of population-level flowering 
responses to favorable climate anomalies. To examine this, we (f) 
assess whether the effects of ENSO anomalies on the proportion 
of trees initiating reproduction are mediated by the proportion of 
the population bearing developing fruits.

Previous analyses of O. bataua's phenology have described re-
productive asynchrony among individuals and supra-annual peaks 
of flower and fruit at the population level (Núñez-Avellaneda & 
Rojas-Robles, 2008; Rojas-Robles & Stiles, 2009; Ruiz & Alencar, 
2004). However, these studies have not simultaneously as-
sessed individual-level variation in reproductive patterns and the 
link between population-level phenological behavior and inter-an-
nual climate variability. Here, we resolve O. bataua's individual- and 
population-level phenological patterns to provide an assessment 
of the possible proximate factors influencing the phenological be-
havior of reproductively asynchronous tropical plants—an ecolog-
ically important, yet critically understudied, component of tropical 
forest communities.

2  | METHODS

2.1 | Study site

The study was conducted in a 130-ha study plot at the Bilsa Biological 
Station (hereafter BBS; 7900450W, 000220N; 436–615m elevation in 
our study site), a 3500-ha reserve of humid Chocó rain forest in north-
west Ecuador (Figure S1). Average monthly temperatures at our study 
site vary between 26 and 28°C, while rainfall is markedly seasonal, 
with a 5-month dry season between July and November characterized 
by relatively low precipitation but persistent cloud cover.

2.2 | Study species

Oenocarpus bataua is a hyperdominant, slow-growing, monoecious, 
protandrous Neotropical palm species reaching up to 35m in height 
(Henderson, 1995; ter Steege et al., 2013). O. bataua produces 
mass inflorescences over 2m long, with over 200 racemes bearing 
more than 300 flowers each. Following the appearance of an inflo-
rescence bud, flowers take an average of 5 months to reach anthe-
sis (Núñez-Avellaneda & Rojas-Robles, 2008; Rojas-Robles & Stiles, 
2009). Individuals can bear multiple inflorescences simultaneously, 
and fertilized flowers develop large, lipid-rich, single-seeded drupes, 
comprising large crops of over 2000 fruits per individual. Fruits take 
approximately 13  months to develop following pollination (Rojas-
Robles & Stiles, 2009). The abundance and nutritional content of its 
fruits and seeds make O. bataua's phenology an important determinant 
of food availability for large-bodied vertebrates, including humans 
(Henderson, 1995).

2.3 | Phenological monitoring

We identified all adult O. bataua trees within our study plot (n = 178; 
Figure S1) and evaluated their reproductive status in monthly cen-
suses (May 2008 to April 2017) where we counted the number of 
developing inflorescences, mature inflorescences (presence of open 
flowers), developing infructescences, and mature infructescences 
(presence of mature fruits) in each tree. We did not differentiate 
between male and female flowering phases. We added 64 individ-
uals to our monitoring effort as we gradually expanded the study 
plot from 30ha to 130ha between January and September of 2010, 
and another 12 new individuals that reproduced for the first time 
through 2015.

2.4 | Tree height and crown emergence

During a single census in 2013, we recorded the height of each 
Oenocarpus bataua tree in our study site by measuring the distance 
from its base to the tallest point of its crown using a laser range 
finder. Following the same procedure, the forest canopy height 
around each focal individual was measured as that of the tallest tree 
within a 10-m radius from the focal individual. We then assessed 
“crown emergence” for each focal tree by comparing its height with 
that of its surrounding canopy. A tree was categorized as “emergent” 
if taller than the canopy around it, and “non-emergent” otherwise. 
Because the presence of a taller tree within a 10-m radius does not 
necessarily guarantee that the focal tree will experience reduced ac-
cess to sunlight, this approach has the limitation of underestimating 
the “true” number of focal trees with “emergent” crowns. However, 
this limitation only increases the probability of type II errors (“false 
negatives”), making our “emergence” metric a conservative estimate 
suitable for analysis.
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2.5 | ENSO and local climate

We evaluated whether ENSO plausibly drives climate variabil-
ity in our site by correlating publicly available temperature, pre-
cipitation, humidity, and cloud cover data from TerraClimate 
(Abatzoglou, Dobrowski, Parks, & Hegewisch, 2018) and CRU 
TS v4.01 (Kobayashi et al., 2015), and the three ENSO indices 
most commonly employed to define El Niño/La Niña events: the 
Oceanic Niño Index (ONI), the Southern Oscillation Index (SOI), 
and the Multivariate ENSO Index (MEI) (https://www.esrl.noaa.
gov/psd/enso, Smith, Reynolds, Peterson, & Lawrimore, 2008) (see 
Appendix S1 for a detailed description of the methods). Overall, 
El Niño conditions were significantly correlated with anomalously 
high temperature and vapor pressure levels in our study region, 
and moderate increases in rainfall and decreases in cloud cover 
(Table S1).

2.6 | Individual-level analyses

Given O. bataua's long reproductive cycle, trees observed for fewer 
than 70  months were excluded from individual-level analyses to 
avoid unrepresentative phenological records, resulting in a sample 
size of 153 individuals. We calculated inflorescence production as 
the total number of inflorescences initiated by each tree throughout 
the study divided by the number of years of observations for that 
tree. We then assessed the effects of tree height and crown emer-
gence on the average number of inflorescences initiated annually 
(making each tree a single data point, n = 153) using a multiple linear 
regression formulated as follows:

The model included an interaction term of tree height and crown 
emergence (Height x Emergence), whose coefficient represents 
the difference in the effect of tree height for trees with emergent 
crowns compared to trees with non-emergent crowns. All predictors 
were centered at 0 and standardized (SD = 1) to aid comparison of 
effect sizes (Schielzeth, 2010) (summary statistics in Table  S2). O. 
bataua's developing inflorescences are frequently depredated by in-
sects, which can result in abortion (Pedersen & Balslev, 1992). In our 
study population, abortion rates averaged approximately 60 percent 
among individuals, and we estimate that an average of 35 percent of 
inflorescences per tree were attacked by insects (data not shown). 
However, if inflorescence abortion affected individual-level inflores-
cence production, we would expect abortion rates to be correlated 
with inflorescence initiation rates, yet we found no such association 
(r = −0.17, NS). Moreover, restricting the analysis to include only in-
florescences that successfully flowered did not qualitatively affect 
our results.

To assess whether the presence of developing fruits affected the 
probability of producing new inflorescences among individuals, we 
excluded all trees that never produced developing infructescences 
over the study period, resulting in a sample of 122 individuals. We 

modeled the probability of inflorescence production each month 
across all individuals using a generalized mixed-effects model 
(GLMM), with a binomial distribution for the response and a logit 
link function for the linear component of the model. The model was 
formulated as follows:

We used production/no production of new inflorescence by focal 
individual i during month j as a binary response (n  =  10,365), and 
the presence of developing infructescences in individual i in month 
j as a fixed effect factor. To test for temporal autocorrelation in the 
response, we computed partial autocorrelation correlation coeffi-
cients for 30 lags in the inflorescence production time series of all in-
dividuals in our sample, finding no significant patterns (see Figure S2 
for details). Additionally, tree ID and year (indexed through individual 
i and year k, n = 122 and n = 10, respectively) were included as ran-
dom intercepts, where IDi∼N

(

0,�2
ID

)

 and Yeark∼N
(

0,�2
year

)

. Parameter 
estimates were generated using Laplace approximation, and the 
model was implemented using the “lme4” package version 1.1–21 in 
R (Bates, Mächler, Bolker, & Walker, 2014).

We assessed seasonal constraints in reproduction by testing for 
clustering of reproduction within a year at the individual level. To do 
this, we computed 95% confidence intervals of the expected number 
of months in which a given number of reproductive events would 
occur if flowering onset was equally likely each month of the year 
(see Figure S3 for details and a schematic description of the process). 
We complemented this analysis by evaluating how the probability 
of inflorescence production among individuals (n = 153) varied by 
month of the year (January–December) using a GLMM with pro-
duction/no production of inflorescences each month as a response, 
month of the year as a fixed effect factor, and tree ID as a random 
effect (see Table S3 for details).

2.7 | Population-level analyses

We calculated the proportion of trees in each phenophase every 
month between May 2008 and April 2017. Prior to analyzing the ef-
fects of ENSO anomalies on population-level flowering phenology, we 
temporally downscaled our data from monthly observations (n = 108) 
to non-overlapping trimesters (4-month period averages, n = 27) for 
two reasons. First, the monthly proportion of trees bearing developing 
inflorescences showed a complex autocorrelation structure with sig-
nificant lags of up to 20 months. Decreasing the temporal resolution of 
our data yielded significant partial autocorrelation coefficients only for 
the first two lags. Second, monthly variation in ENSO indices showed 
weaker correlations with climate than did 4-month periods (Table S1). 
Because the proportion of trees producing new inflorescences was 
strongly autocorrelated between consecutive months (r  =  .92), we 
imputed missing observations in December 2008, October and 
November 2012, December 2014, and April 2015, by assuming a linear 
rate of change between two months of observation bounding a missing 

(1)
Avg. inflor. per year∼�0+�1×Height×�2×Emergence+�3×Height×Emergence+�

(2)

Logit
(

Inflor. productionij
)

∼�0+�1× GF presenceij+ IDi+Yeark+�

https://www.esrl.noaa.gov/psd/enso
https://www.esrl.noaa.gov/psd/enso
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value. We then computed the non-overlapping trimestral time series 
using the full, imputed monthly time series.

The relationship between rates of reproductive onset in the pop-
ulation and ENSO anomalies was quantified using an autoregressive 
linear model formulated as follows:

We used the proportion of trees bearing developing inflorescences 
in the focal trimester as a response (Inflort) and included the value of 
the response for the previous trimester as a predictor to account for 
temporal autocorrelation (Inflort-1). We selected the ENSO index most 
strongly associated with climate in our site (MEI) and selected between 
the two time lags of the MEI most correlated with local climate (lag 
0: MEIt, lag 1: MEIt-1) by running two models, including only one of 
them as a predictor, and selecting the model with the lowest AIC score 
(MEIt). We used ENSO indices instead of the climate variables from 
TerraClimate because ENSO simultaneously affects multiple climate 
variables, providing an integrated “climate package” (Stenseth et al., 
2003). To evaluate whether the prevalence of individual-level resource 
sinks affects population-level flowering phenology, the model included 
the proportion of trees bearing developing fruits in the population 
(GFt) as a predictor. We also included an interaction term between 
MEIt and GFt, which models the linear dependence of the phenological 
effects of MEIt on GFt or (alternatively) the dependence of GFt effects 
on MEIt. We visualized this interaction by computing a cross-sectional 
plot of the effect of MEIt on the response at three reference (standard-
ized) values of GFt (−1, 0, 1) using the “visreg” package in R (Breheny 
& Burchett, 2013). To do so, each standardized observation of GFt (a 
continuous variable) was assigned to the reference value closest to it. 
We standardized all predictors on Eqn. 3 to a mean of 0 and standard 
deviation of 1 except for MEI, which is a standardized index (summary 
statistics in Table S2). We detected no significant autocorrelation in 
model residuals (Box–Pierce test: p > .05 for all lags; Godfrey, 1979).

All data manipulation, visualization, and analysis for this study were 
carried out using R version 3.6.1 (R Core Development Team, 2018).

3  | RESULTS

3.1 | Individual-level predictors of phenological 
variation

Our model (Equation  1) explained a significant proportion of the 
variation in reproductive rates in our sample (R2  =  .22, df  =  149, 
F  =  13.67, p  <  .001). For average tree heights, canopy emergence 
was estimated to increase yearly inflorescence production by 0.32 
(i.e., 34.7 percent) compared with trees whose crowns were under 
the canopy (β1 = 0.32, SE = 0.08, p < .001; Figure 1a). Inflorescence 
initiation showed a significant positive relationship with tree height 
for trees with non-emergent crowns, with an average increase of 
3.5m in tree height (equal to 1SD) predicted to increase yearly in-
florescence production by 0.21 inflorescences per year (β2 = 0.21, 
SE = 0.07, p = .002; Figure 1b). In contrast, we detected a significant 

negative interaction of similar magnitude between tree height and 
crown emergence (β3 = −0.23, SE = 0.08, p =  .006), indicating that 
tree height was only associated with higher reproductive rates for 
trees with canopy-covered crowns (Figure  1b). The presence of 
developing infructescences significantly reduced the probability 
that an individual would produce new inflorescences each month 
from 0.117 to 0.094 (i.e., a 20.4 percent decrease) (exp(β1) = 0.796; 
Table 1).

The number of distinct months of reproductive onset did not dif-
fer from the random expectation for 151 of 153 trees (98.7 percent 
of the sample; Figure 2), suggesting that individuals do not consis-
tently initiate flowering in certain months of the year. Accordingly, 
we found no significant differences in probability of inflorescence 
production among trees for 10 out of 11 months relative to the ref-
erence month of July (Table S3). Though the estimated probability 
that an individual would produce a new inflorescence in December 
was 48.9 percent lower than in July (0.103 versus. 0.053; Table S3), 
the lack of significant differences for all other months points to an 
aseasonal pattern of inflorescence production.

3.2 | Population-level phenological behavior

Our sample captured three population-level reproductive cycles, 
with supra-annual reproductive peaks separated by periods of ap-
proximately 30 to 36 months. The proportion of trees bearing ma-
ture fruits (mean ± SD =5.1 ± 6.7 percent, range = 0 – 27.0 percent) 
surged around 18 to 24  months following peaks in inflorescence 
initiation, with individuals bearing mature fruits present through-
out the majority of the study (85 percent of the monitoring period; 
Figure 3). The proportion of individuals bearing developing inflores-
cences remained consistently above 13 percent of the population, 
and well over 20 percent for most of the study period (mean = 36 
percent; Figure 3, Table S2).

3.3 | ENSO anomalies and population-
level phenology

Our model (Equation 3) explained most of the variation in the pro-
portion of trees initiating new inflorescences through time (R2 = .86, 
df = 21, F = 32.75, p < .001). Under average ENSO conditions, devel-
oping inflorescence frequency was negatively correlated with devel-
oping-infructescence frequency (Figure 4a; β3 = −0.052, SE = 0.012, 
p < .001), with increases of 12 percent in the proportion of trees with 
developing fruits (equal to 1 SD) associated with a 5.2 percent de-
crease in the proportion of trees bearing developing inflorescences. 
In contrast, we detected a positive relationship with the Multivariate 
ENSO Index (MEI) for average levels of developing-infructescence 
frequency (Figure 4b; β2 = 0.056, SE = 0.013, p <  .001), indicating 
a link between the warm phase of ENSO, typically associated with 
El Niño conditions, and a greater frequency of trees with develop-
ing inflorescences. The effects of the MEI on the frequency of trees 

(3)
Inflort∼�0+�1× Inflort−1+�2×MEIt+�3×GFt+�4×MEIt×GFt+�
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initiating reproduction depended significantly on the frequency 
of trees bearing green fruits (Figure  4c; β4 = −0.040, SE  =  0.011, 
p =  .001). During periods of low green fruit frequency (1SD below 
average, ~13 percent), the model predicted that a change from −1 
to 1 in the MEI (moderate la Niña to moderate el Niño conditions) 
would increase the proportion of trees bearing developing inflores-
cences by 19 percent, compared to a change of only 3 percent in 
periods of high developing-infructescence frequency (1SD above 
average, ~37 percent).

4  | DISCUSSION

Asynchronously flowering species are common in the tropics, with 
estimates as high as 22 percent of all species sampled in some tree 
communities (Hamann, 2004). While many eco-evolutionary driv-
ers have been proposed as ultimate causes for asynchronous phe-
nological patterns (Augspurger, 1981; Elzinga et al., 2007; Janzen, 
1971), the proximate factors controlling individual- and population-
level patterns are poorly understood. By studying the asynchronous 
canopy palm Oenocarpus bataua, we found that access to sunlight 

F I G U R E  1   Multiple regression of 
inflorescence initiation rates versus 
tree height, crown emergence, and the 
interaction of the two for 153 adult 
Oenocarpus bataua trees in northwestern 
Ecuador (see “Methods,” Equation 1). (a) 
Mean difference in inflorescence initiation 
rates between trees with and without 
crowns that emerge from the canopy 
assuming an average tree height. (b) 
Effect of tree height controlling for crown 
emergence. ***: p < .001

TA B L E  1   Generalized mixed-effects model (GLMM) of 
production/no production of inflorescences among 122 adult 
Oenocarpus bataua palms from May 2008 to April 2017 (see 
“Methods,” Equation 2). Coefficient estimates for fixed effects are 
reported in probability scale in parenthesis (by exponentiating the 
estimate) for ease of interpretation

Random effects

  Number of blocks SD

ID 122 0.255

Year 10 0.310

Fixed effects

  Coefficient SE Z p

Intercept −2.14 
(0.117)

0.110 −19.50 <.001

GF 
present

−0.228 
(0.796)

0.073 −3.12 .002

  AIC Log 
likelihood

Deviance DF residuals

  6,999.6 −3495.8 6,991.6 10,361
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and resource sinks in the form of developing infructescences affect 
patterns of inflorescence production among individual trees, and 
interact with ENSO-driven climate variation to shape the flowering 
phenology of the population as a whole. Our results provide one of 
the first assessments of the factors controlling flowering phenol-
ogy across individuals and populations of asynchronous species and 
suggest that a resource-centric view of phenological variation might 
help elucidate the asynchronous phenological patterns frequently 
observed in tropical plant species.

4.1 | Individual-level patterns

Reproductive asynchrony could emerge if individual-level differ-
ences (in environmental stress, access to resources, genetics, etc.) 
affect the rate of exposure or the sensitivity of individual plants to 
relevant environmental cues (Ollerton & Lack, 1992). However, this 
mechanism predicts variation in flowering time only within seasons 
in which threshold levels of a cue occur. For example, species flow-
ering in response to spring warming may vary in flowering time only 
within the spring, while those cued by threshold levels of solar irradi-
ance might vary in flowering time only within seasons of sufficient 
day length. As a result, variation in exposure to external cues fails 
to explain the degree of reproductive asynchrony observed in many 
tropical species. In O. bataua, individuals in proximity and under 
similar microsite conditions routinely initiate flowering out of phase 
with one another. Moreover, we found no evidence of seasonality in 
flowering onset among individuals in our focal population. Together, 
these observations show that external cues are unlikely drivers of 
reproduction in O. bataua.

Instead, individual-level differences can influence reproduc-
tion through their effect on resource budgets. Access to sunlight 
influences photosynthetic rates and carbohydrate production 
and enhances various components of plant reproduction, includ-
ing reproductive frequency and crop sizes (Poorter et al., 2019). 
Therefore, reproductive rates may be higher among individuals with 
greater access to sunlight. Accordingly, we found that crown emer-
gence from the canopy was associated with a 34.7 percent increase 
in inflorescence production controlling for differences in plant size, 
suggesting that photosynthetic rates may drive phenological varia-
tion among individuals in this species. Additionally, tree height only 
had significant effects among individuals with non-emergent crowns 
(Figure 1a). These results suggest that tree height might influence 
rates of reproduction through increased access to sunlight rather 
than through allometric effects on resource allocation in O. bataua, 
though it is possible that size-dependent resource allocation could 
affect other reproductive variables, such as crop sizes or fruit abor-
tion rates. Although our methodology establishes a link between 

F I G U R E  2   Number of distinct months of reproductive onset 
versus the frequency of reproductive events among 153 adult 
Oenocaprus bataua trees. The shaded region represents the null 
95% CI of the number of distinct months of onset expected if onset 
was equally likely each month of the year, while the dashed red 
line represents a best-fit curve for our observed data. The black 
line represents a 1:1 line, indicating the highest possible number of 
distinct months of onset in which a given number of events could 
occur. Points have been jittered to show multiple observations 
occurring at a given combination of x and y values

F I G U R E  3   Time series of the 
proportion of trees bearing developing 
inflorescences (black), mature 
inflorescences (yellow), green fruits 
(green), and mature fruits (red) in a 
population of 178 adult Oenocarpus 
bataua trees in a Chocó rain forest, 
northwestern Ecuador. Gaps on the time 
series correspond to missing observations
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sunlight and phenological behavior in O. bataua, we used a conser-
vative method to estimate crown emergence. Direct measurements 
of the amount of solar radiation in treecrowns would likely reveal 
even greater effects of access to sunlight on inflorescence produc-
tion rates.

If resource levels cue flowering among individuals, active re-
source sinks could reduce the probability that a tree will develop 
new inflorescences (Obeso, 2002). Accordingly, the presence of 
developing infructescences in an individual led to an estimated re-
duction of 20.4 percent in the monthly probability of inflorescence 
production. Moreover, increases in the proportion of trees bearing 
developing infructescences suppressed the population-level in-
creases in inflorescence production associated with the warm phase 
of ENSO (below), suggesting that developing infructescences act as 
resource sinks that influence individual-level phenological behavior. 
Because the presence of developing fruit is a direct consequence of 
previous inflorescence production, it is possible that the decrease 
in the probability of producing new inflorescences reflects resource 
expenditures associated with recent inflorescence production. 
However, the significant increase in reproductive biomass associ-
ated with the transition of flowering to fruiting, as well as the high 
nutritional content and long maturation time of its fruits, suggests 
that infructescence development likely demands a greater amount of 
resources than inflorescence development, making fruit production 
and ripening stronger resource sinks than inflorescence production.

Our results support the hypothesis that resource status might 
mediate phenological behavior in O. bataua by providing endoge-
nous flowering cues (Lastdrager et al., 2014; Ruan, 2014; Wahl et al., 
2013). However, further analyses, such as experimental manipula-
tion of inorganic resources, direct measurements of non-structural 
carbohydrates, nitrogen, and phosphorous concentrations before 
and after reproduction (e.g., Miyazaki et al., 2009), or develop-
ing-fruit pruning treatments, are necessary to conclusively establish 
the role that resource levels and resource sinks play on reproductive 
onset in our system.

4.2 | Population-level patterns

O. bataua is pollinated by a diverse array of insect species (Núñez-
Avellaneda & Rojas-Robles, 2008), and many vertebrate taxa con-
sume its fruits and lipid-rich seeds (Henderson, 1995). We observed 
a constant presence of flowering individuals and a protracted 
presence (85% of the study period) of trees with mature fruit. 
Consequently, although the presence of fruiting trees was not con-
stant, we propose that O. bataua's hyperdominance (ter Steege et al., 
2013), massive flower and fruit crops, protracted presence of flow-
ering and fruiting trees (with pronounced peaks lasting ~1.5 years), 
and the wide array of frugivores and pollinators it sustains (Mahoney 
et al., 2018; Narasimhan, unpublished Data), makes it a keystone 
plant resource for many rain forest organisms of the Chocó biore-
gion (Terborgh, 1986, Diaz-Martin et al., 2014).

While reproduction had no apparent seasonality at the indi-
vidual level, the frequency of trees producing new inflorescences 
in the population showed supra-annual peaks occurring at 20- to 
36-month intervals (Figure 3). Although some masting tropical taxa 
use supra-annual climate anomalies to cue reproduction in mass 
fruiting and flowering events, they are characterized by high lev-
els of synchrony among individuals (Sakai et al., 2006). In contrast, 
the proportion of reproducing trees in our focal population never 
dropped below 12 percent, with about a third of the population, on 
average, bearing developing inflorescences during any given month. 
Therefore, it is unlikely that the supra-annual phenological patterns 
reported in this study stem from supra-annual climatic cues.

In contrast, climate variation can affect reproductive pat-
terns through its effects on resource supply (Allen et al., 2017; 
Pau et al., 2013; Wright & Calderón, 2006). We found that the 
proportion of trees producing new inflorescences was influ-
enced by ENSO, with anomalously warm conditions (El Niño) 
associated with higher inflorescence initiation in our study 
population. Additionally, the proportion of trees with develop-
ing fruits was negatively associated with that of trees initiating 

F I G U R E  4   Summary plots from an autoregressive model (see “Methods,” Equation 3) of the proportion of trees initiating new 
inflorescences in the population versus (a) the proportion of trees with developing (green) fruits in the current trimester (GFt) and (b) the 
Multivariate ENSO Index in the current trimester (MEIt). (c) Cross-sectional plot of the effects of ENSO on inflorescence initiation mediated 
by the frequency of trees bearing developing fruits in the population (given by MEIt x GFt interaction term in Equation 3). The y-axes of 
(a) and (b) show partial residuals of the model after accounting for the effects of all other predictors. All predictors were centered and 
standardized. The autocorrelation term, Inflort-1 (β1 = 0.096, SE = 0.012, p < .001), is not displayed
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new inflorescences, with higher developing-infructescence fre-
quencies suppressing the flowering response of the population 
to ENSO-induced climate anomalies. These results show that 
inter-annual climate variation can influence temporal patterns 
of reproduction at the population-level in asynchronous species 
and that the magnitude of these effects is mediated by the prev-
alence of individual-level resource sinks in the population—in 
this case, developing infructescences. Though ENSO anomalies 
seemed significantly associated with changes in temperature, 
rainfall, and cloud cover in our study site (Table S1), we did not 
directly measure local climate variables and cannot currently 
discern the precise climatic effects of ENSO anomalies nor the 
variables responsible for O. bataua's population-level responses. 
Therefore, direct measurements of local climate, coupled with 
experimental warming (e.g., Nakamura, Muller, Tayanagi, Nakaji, 
& Hiura, 2010), irrigation (e.g., Wright & Calderón, 2006), or 
high-intensity light treatments (e.g., Graham et al., 2003), could 
help identify the climate variables that generate population-level 
reproductive responses in O. bataua.

Although O. bataua's population-level phenology responded to in-
ter-annual variation in climate, other species are likely to respond to 
climate fluctuations occurring at different temporal scales. O. bataua 
produces resource-demanding reproductive structures that develop 
over multiple years (Rojas-Robles & Stiles, 2009), and shorter-lived cli-
mate fluctuations, such as those occurring seasonally, are unlikely to 
affect resource budgets enough to induce detectable responses in the 
population. In contrast, many asynchronous species produce flower 
and fruit crops with lower energetic demands that can develop within 
a single season (e.g., Milton, Windsor, Morrison, & Estribi, 1982), or 
multiple times per year (e.g., Wright & Calderón, 2018). Consequently, 
climate fluctuations occurring over shorter temporal scales might 
provide resource pulses of sufficient magnitude to influence the fre-
quency of individuals initiating reproduction. This mechanism could 
explain why the populations of many species show annual reproduc-
tive peaks even though the timing of reproduction within the year var-
ies widely among individuals (e.g., Wright et al., 2019).

5  | CONCLUSIONS

In asynchronously reproducing species, the protracted presence 
of flowering individuals suggests that climatic and photoperiodic 
cues are unlikely to control flowering onset. In contrast, the role 
of resource levels as flowering cues predicts that factors related to 
resource assimilation and allocation should generate phenological 
variation among individuals. Our study shows how differences in 
access to sunlight result in phenological variation among individu-
als of an asynchronously reproducing canopy palm. Additionally, 
we show that ENSO-induced climate anomalies, factors likely af-
fecting resource supply for the whole population, influence pop-
ulation-level flowering phenology and that the magnitude of their 
effect is mediated by the prevalence of resource sinks among in-
dividuals. Further studies are needed to conclusively demonstrate 

that resource levels induce flowering and the mechanisms by 
which climate anomalies affect resource supply and phenology in 
O. bataua. Nevertheless, our results provide one of the first as-
sessments of the proximate drivers of phenological patterns for 
individuals and populations of an asynchronous species, under-
scoring how resource dynamics across levels of organization might 
drive the weak reproductive synchrony among conspecifics ob-
served in many tropical plant taxa.
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