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The degree to which foraging individuals are able to appropriately modify their behaviors in response to dynamic environmental condi-
tions and associated resource availability can have important fitness consequences. Despite an increasingly refined understanding of 
differences in foraging behavior between individuals, we still lack detailed characterizations of within-individual variation over space 
and time, and what factors may drive this variability. From 2014 to 2017, we used GPS transmitters and accelerometers to document 
foraging movements by breeding adult Brown Pelicans (Pelecanus occidentalis) in the northern Gulf of Mexico, where the prey land-
scape is patchy and dynamic at various scales. Assessments of traditional foraging metrics such as trip distance, linearity, or duration 
did not yield significant relationships between individuals. However, we did observe lower site fidelity and less variation in energy 
expenditure in birds of higher body condition, despite a population-level trend of increased fidelity as the breeding season progressed. 
These findings suggest that high-quality individuals are both more variable and more efficient in their foraging behaviors during a 
period of high energetic demand, consistent with a “rich get richer” scenario in which individuals in better condition are able to invest 
in more costly behaviors that provide higher returns. This work highlights the importance of considering behavioral variation at multiple 
scales, with particular reference to within-individual variation, to improve our understanding of foraging ecology in wild populations.
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INTRODUCTION
An animal’s movement decisions and associated rates of  energy 
expenditure have important implications for its survival and fit-
ness, which in turn scale up to shape broader population dynamics. 
In idealized models of  optimal foraging behavior, individuals are 
assumed to move through environments, in which resources may 
be patchily distributed, in a manner that maximizes net energy 
gain (Schoener 1971; Pyke 1984) and abandon patches when they 
fall below a certain threshold of  quality (marginal value theorem; 
Charnov 1976). In reality, however, social and ecological factors 
including competition, environmental disturbance, and imperfect 
knowledge about the distribution of  patches may affect resource 
access over space and time, leading to deviations from behaviors 
predicted by optimality models. To characterize these behavioral 

changes, researchers often focus on between-individual differ-
ences in foraging metrics, primarily with regard to individual attri-
butes such as age, sex, or personality (Marchetti and Price 1989; 
Desrochers 1992; Clarke et al. 1998; Ruckstuhl 1998; Bolnick et al. 
2003), and responses to external factors such as density-dependent 
competition (Sih 1984; Rita et al. 1996) or environmental hetero-
geneity (Wiens 1976; Kotler and Brown 1988; Patrick et al. 2013; 
Patrick et  al. 2014). This body of  work has advanced our under-
standing of  foraging ecology by revealing how endogenous and 
exogenous factors may interact to shape consistent foraging differ-
ences within populations.

Because exogenous factors may change dynamically and affect 
resource availability at various spatial and temporal scales, we 
might also expect to observe substantial within-individual varia-
tion, or behavioral flexibility, in foraging behaviors in addition to 
between-individual variation (Dingemanse 2002; Morand-Ferron 
et al. 2007; Biro and Adriaenssens 2013; Stamps 2016). This is par-
ticularly true during periods of  intense energetic demand (Parrish 
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1997), pronounced change in environmental conditions (Bonte et al. 
2007), or predation risk (Briffa et al. 2013), when not all individu-
als may adjust behaviors in the same way or to the same degree. 
If  certain individuals exhibit greater variation over time than oth-
ers, ecologically important patterns may go unrecognized if  only 
differences among individual means or personalities are considered 
(Dingemanse et  al. 2010; Royauté and Dochtermann 2017), thus 
limiting the accuracy of  population-level inferences and assessment 
of  the degree to which those populations may be affected by envi-
ronmental change.

The relationship between an individual’s quality and its behav-
ioral flexibility is of  particular interest, since the energetic costs and 
rewards of  variability remain poorly resolved (Weimerskirch 1998; 
Piersma and van Gils 2011). On one hand, individuals in better 
condition may exhibit reduced flexibility, for example by achiev-
ing social dominance and monopolizing resources in high-quality 
patches while others are forced to travel elsewhere (Weimerskirch 
1998; Thums et al. 2013). Alternatively, individuals in better con-
dition may travel more, due to a superior ability to track chang-
ing resources and bear increased travel costs (van Gils et al. 2007; 
Lescroël et  al. 2010). Both of  these scenarios have been observed 
in experimental settings (David et al. 2012; Dosmann et al. 2015), 
but field-based tests of  behavioral flexibility in foraging movements 
in relation to body condition are rare. Lescroël et al. (2010) found 
that individuals in better condition were able to access foraging 
locations that were costlier to reach but returned higher energetic 
rewards, whereas individuals in poorer condition were not able 
to do so. This pattern could be described as a “rich get richer” 
scenario, in which only individuals above a certain physiological 
threshold are able to access relatively inaccessible but higher quality 
food sources. The degree to which this framework of  seabird forag-
ing in relation to indicators of  individual quality, and the degree to 
which behavioral flexibility may be mediated by individual charac-
teristics, applies to other systems is currently unclear, and longer-
term observations of  individual movements are still needed to fully 
understand the ecological effects of  patchy resource distributions in 
this context.

The relationship between condition and variation in foraging 
movements is likely to be of  particular importance for central-
place foraging species, in which individuals return to a home loca-
tion between trips rather than moving continuously or randomly 
through an environment (Orians and Pearson 1979). Although 
widespread, this strategy presents obvious challenges for resource 
acquisition, including high competition close to the colony and a 
reduced awareness of  changes in patch availability throughout the 
landscape over time (Manly et  al. 2002; Matthiopoulos 2003). As 
frequent top predators and colonial nesters, seabirds are ecologi-
cally important central-place foragers that are especially sensitive 
to local environmental change (Cairns 1988; Piatt et al. 2007; Piatt 
and Sydeman 2007), making them appropriate subjects for exami-
nation of  flexible foraging tactics in response to dynamic resource 
availability.

In this study, we utilize 4  years of  breeding season tracking 
data on a population of  nesting brown pelicans (Pelecanus occiden-
talis) in the northern Gulf  of  Mexico to investigate both within- 
and between-individual variations in foraging movements. Based 
on previous findings, body condition is an important predictor 
of  average daily movement rates in this population (Walter et  al. 
2014). Therefore, our over-arching hypothesis was that body con-
dition should be associated with an individual’s ability to vary its 
foraging behaviors in a variety of  ways over time, presumably to 

track shifting prey resources, with this pattern becoming more pro-
nounced as chick growth imposes greater demands on provision-
ing adults. More specifically, we predicted that individuals in better 
body condition would exhibit reduced foraging site fidelity (i.e., 
higher variation in space use) and lower variation in energy expen-
diture as they presumably discovered more high-quality foraging 
patches and thus improved foraging efficiency. As low site fidelity 
in this scenario is presumably associated with a more exploratory 
nature involving travel throughout the region, we also predicted 
that on average, individuals in better condition would take less lin-
ear trips of  longer distance and duration.

METHODS
Ethics statement

All field work was approved by the Tulane Institutional Care 
and Use Committee (IACUC) Permit #0395R2. Bird marking 
was approved by Bird Banding Laboratory Permit #06669 and 
Louisiana Department of  Wildlife and Fisheries (LDWF) Scientific 
Collecting Permit nos. LNHP-14-034, LNHP-15-034, LNHP-16-
028, and LNHP-17-042. Island access was also granted annually 
by LDWF.

Study system and data collection

The focal area of  this study was Raccoon Island, located in 
Terrebonne Bay, LA in the northern Gulf  of  Mexico (29.0519°N, 
−90.9336°W). Raccoon is the largest seabird colony in Terrebonne 
Bay, with 3000–5000 brown pelican nests commonly initiated each 
year (Selman et al. 2016). The island is approximately 2.3 km long, 
and its interior is dominated by several grass and shrub species, 
all of  which serve as nesting sites for several bird species. In this 
region, brown pelicans primarily prey on Gulf  menhaden (Brevoortia 
patronus) (Shields 2014; Lamb et  al. 2017), which are patchily dis-
tributed in schools over time and space, as well as heavily fished 
during the pelican breeding season (Ahrenholz 1991; Langseth 
et al. 2014). Tracking work began in synchrony with the hatching 
dates of  the first cohort of  eggs, typically in late April or early May 
of  each year, from 2014 to 2017.

We selected nesting adults to track that were in the posthatch-
ing phase of  nesting, with nests only in black mangrove (Avicennia 
germinans) 1–1.5 m in height to control for potential differences in 
behaviors related to ability to acquire high-quality nesting sites 
(Walter et  al. 2013). We captured individuals either by hand or 
using leg snares and attached e-Obs© tracking units (e-Obs Digital 
Telemetry, Gruenwald, Germany). Units recorded and stored GPS 
locations every 15 min, as well as acceleration values in 3 dimen-
sions at a rate of  ~5 unitless values per second (5 Hz). These 
values are subsequently converted to units of  g using calibrated 
values derived before unit deployment. We attached units using a 
backpack-style harness made of  Teflon ribbon (Bally Ribbon Mills, 
Bally, PA) and copper clasps. The full tracking apparatus weighed 
approximately 110 g, less than 5% of  any bird’s body mass (range: 
2600–4330 g). We took blood samples for lab-based determination 
of  sex (Fridolfsson and Ellegren 1999), marked individuals with 
metal and color leg bands, and used morphological measurements 
to calculate indices of  body condition (standardized residuals of  
linear regressions of  log-transformed body mass on 3  * log(tarsus 
length) for each sex (Andersson et al. 2002). We revisited the island 
every 7–10  days after deployment, remotely downloaded track-
ing data to a handheld base station, and checked nests of  tracked 
individuals to document nest fate and ensure that collected data 
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represented behavior of  birds that were continuing to provision 
young.

Data processing and analysis

We used Microsoft Excel and custom scripts in R version 3.4.0 (R 
Core Team 2016) to remove duplicate locations and prepare data 
for analysis. We isolated “complete” foraging trips that began and 
ended on the colony within the same day using the “adehabitatLT” 
package in R (Calenge 2015), removed locations on the nest or 
beach of  the colony, and rediscretized them to recover the entire 
trajectory of  the foraging bout. Once individual trips were isolated, 
we calculated the following 5 descriptive foraging metrics: the total 
duration, total distance traveled, maximum distance traveled (as the 
furthest recorded point from the individual’s nest), linearity (0–1, 
where 1 represents a completely straight line; Batschelet 1981; 
Benhamou 2004), and departure angle (as the mean absolute angle 
of  the first 10 points in the trajectory). Using accelerometer data, 
we also calculated overall dynamic body acceleration (ODBA), in 
which the static component of  acceleration is subtracted from each 
recorded axis, and the remaining dynamic components of  each axis 
are then summed (Wilson et  al. 2006). ODBA has been demon-
strated to be an accurate correlate of  energy expenditure across 
a variety of  taxa (Wilson et  al. 2006; Halsey et  al. 2009; Halsey 
et  al. 2011; Watanabe et  al. 2013), making it a useful metric by 
which energy expenditure of  individual movement patterns may 
be assessed. For this study, we calculated a proxy for total energy 
expenditure for a foraging trip by multiplying its ODBA by its 
duration.

We performed all statistical analysis in R. We first ascribed indi-
vidual characteristics (sex, condition, day, and year) in addition 
to the previously described trip characteristics (Supplementary 
Tables  1 and 2). To determine whether there was a relationship 
between individual characteristics and distributions of  colony 
departure directions, we separated birds by sex (n = 14 females and 
16 males) and used natural breaks in the distribution of  birds’ body 
condition to separate birds into 3 groups representing low, medium, 
and high body condition (n = 10 in each group; see Supplementary 
Table 1). We then calculated the mean and variance in trip direc-
tion for each group, used Rayleigh’s test of  uniformity to determine 
deviation from circular normal angle distributions, and performed 
a Watson–Wheeler test to determine whether the 3 groups’ distri-
butions differed significantly from one another, using the R package 
“circular” (Agostinelli and Lund 2017).

We next examined changes in explicit space use, within and 
between individuals over time, during complete foraging trips. We 
used 2 approaches to characterize foraging site fidelity as the degree 
of  overlap between sequential pairs of  foraging trips (i.e., start-
ing with the second trip, comparing overlap between that trip and 
the one preceding it). We first converted each trip into presence/
absence rasters to simply identify where birds were located on the 
landscape, using a grid with 2 × 2 km cells. Since the scale at which 
pelicans perceive or navigate the environment when making vari-
ous movement decisions is not known, we generated these rasters at 
a variety of  resolutions; grids of  comparable resolutions (0.9–6 km 
cells) yielded qualitatively similar results. Secondly, we generated 2 
movement-based kernel home ranges for each trip: a 50% range 
which roughly corresponds to areas where most foraging is assumed 
to take place, and a 95% range that reflects the majority of  the 
area traversed during a trip, including potential landmarks used in 
navigating the environment. Home ranges were constructed using 

the biased random bridge method in the “adehabitatHR” package 
(Benhamou and Cornélis 2010; Calenge 2015), using the BRB.D 
function to calculate diffusion parameters for each home range, hmin 
value of  450 m, minimum step length of  5 m, on a grid of  extent 
20 and size 2000 to generate high-resolution images. For the rasters, 
we calculated overlap as the percentage of  cell overlap between 
each pair of  trips (Bradshaw et al. 2004). For home ranges, we cal-
culated Bhattacharyya’s affinity, which measures the probability of  
2 ranges representing identical utilization of  space (Bhattacharyya 
1943; Fieberg and Kochanny 2005). Each of  these measures of  
overlap was used as the response variable in separate analyses. As 
our measurement of  site fidelity could be confounded by changing 
home range size, with large home ranges eventually having greater 
overlap when birds forage in the same general region (i.e., a bay), 
we also calculated the area of  each home range as a response vari-
able for a separate analysis. These space use characteristics were all 
analyzed using mixed-effect models, with sex, body condition, year 
and Julian day as fixed effects and bird identity as a random effect. 
To control for the fact that consecutive foraging trips in the data set 
were not always equally spaced in time (due to incomplete recorded 
trips in the telemetry data), we included the time between each pair 
of  trips as an additional predictor in the site fidelity models. Finally, 
to determine whether these patterns changed over time at differ-
ent rates based on condition, we included a day × condition inter-
action term in each model, which we retained when found to be 
significant. For raster and home range overlap models, we utilized 
beta-inflated regression with the “gamlss” package in R (Rigby and 
Stasinopoulos 2005) to account for the presence of  zeroes in the 2 
overlap response variables. To examine within-individual variation 
in energy expenditure, we also used a multiple linear regression to 
test for correlates of  coefficients of  variation for individuals’ trip 
energy expenditure, using sex and condition as predictors.

Finally, we analyzed variation in more traditional foraging 
trip metrics. To measure among-individual variation, we con-
structed separate linear mixed effects models, all of  which used 
sex, body condition, year, and Julian day as predictors, for each 
of  our response foraging metrics (total distance, maximum dis-
tance, duration, linearity, and energy expenditure), again with 
bird identity as a random effect. We also assessed behavioral flex-
ibility by calculating repeatability within individuals using the R 
package “rptR” (Nakagawa and Schielzeth 2010). In all relevant 
cases, we made appropriate variable transformations to meet 
basic model assumptions: total distance, maximum distance, and 
duration were all square-root transformed, whereas linearity was 
arcsine-transformed.

RESULTS
Raw data collection from birds included in analysis yielded 55 316 
GPS points from 30 birds (mean  =  1843.87  ± 884.20 [SD] pts/
bird) (Geary et al. 2018). We received usable round-trip data from 
13 birds in 2014, 4 birds in 2015, 7 birds in 2016, and 6 birds 
in 2017 (n  =  30 total birds). We removed 1288 movement seg-
ments from the data set due to insufficient GPS fixes to accurately 
describe entire foraging bouts, resulting in 678 isolated, complete 
foraging trips (mean = 22.60 ± 20.78 trips/bird; see Supplementary 
Table 1).

All 3 condition classes significantly departed from a uniform dis-
tribution of  departure angles when leaving the colony on foraging 
trips (P < 0.001), with all birds exhibiting a consistent bias toward 
traveling east–west toward the neighboring bays (means: 68–125°, 
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where 0° is due north). However, there was significant variation 
between the 3 condition classes in degree of  variance in depar-
ture angles (W = 26.425, df = 4, P ≤ 0.001), with birds in higher 
condition exhibiting higher variance in these angles 0.762 versus 
0.691 and 0.664 for low and medium conditions, respectively, on 
a 0–1 scale; Figure 1. This was not the case in a similar compari-
son between sexes, for which no differences in departure angle were 
noted (W = 4.990, df = 2, P = 0.082).

Spatially explicit analyses of  foraging locations corroborated the 
idea that condition and individual-level variability may be related. 
Specifically, we observed a negative correlation between raster-gen-
erated metrics of  overlap and body condition, with an approximately 
12% decrease per unit increase in condition (t = −2.224, P = 0.026, 
condition range: −2.11–1.72, Figure  2a), even as population-wide 
measures of  raster overlap increased over time (0.9% per day) as 
nestlings matured and their energetic costs increased (t  =  3.706, 
P  <  0.001, Figure  2b). Similarly, within-individual overlap in 95% 
home ranges also decreased approximately 15% per unit increase in 
condition (t = −2.096, P = 0.036), despite population-wide increases 
of  0.9% per day (t = 2.934, P = 0.003). In contrast, 50% core usage 
area overlap also increased with time (t = 3.201, P = 0.001) but was 
not correlated with condition (t = −0.757, P = 0.449). Overall 50% 
and 95% home range sizes became smaller with time (P < 0.001 in 
both cases), suggesting that the increase we observed in site fidelity 

over time is not attributable to growing home ranges. These 2 models 
also had a significant day × condition interaction term (t  =  2.144, 
P = 0.032 and t = 2.354, P = 0.019, respectively) with positive coef-
ficients (0.003 in both cases) indicating that despite the decrease in 
home range sizes at the population level, high-condition birds’ home 
ranges remained relatively larger.

Variation in total ODBA—our proxy of  energy expenditure—
was negatively correlated with condition (t  =  −2.354, P  =  0.026; 
Figure  3). In other words, despite being more variable in terms 
of  where they foraged, individuals in better condition expended a 
more consistent amount of  energy per foraging trip relative to indi-
viduals in poorer condition.

Analyses examining variation in total distance, maximum dis-
tance, duration, linearity, and energy expenditure found significant 
but low within-individual repeatability in all cases (r = 0.046–0.153, 
SE = 0.024–0.047, P < 0.01 for all metrics), indicating low overall 
consistency in these basic metrics. Although significant predictors 
emerged in our comparisons of  the same metrics across individuals 
and time, we believe that they lacked biological relevance as the 
sizes of  effects were small (Supplementary Table  3). For example, 
although males had significantly shorter durations of  foraging 
bouts than females (P < 0.0015), it is unlikely that an average differ-
ence of  about 3 min in duration would have any effect on pelican 
energetics or foraging success.

(a) (b)

(c) (d)

N

Figure 1
Visualization of  departure angles by brown pelicans in the Gulf  of  Mexico after separating individuals into 3 classes of  body condition. (a) Location of  the 
study site in relation to the rest of  the northeastern Gulf  of  Mexico; (b–d) variance in departure angles of  low (b), medium (c), and high (d) conditions.
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DISCUSSION
Studies of  foraging ecology have traditionally focused on differences 
between individuals, yet there are good reasons to believe that sub-
stantial variation exists within individuals over time, and that this 
variation may have important consequences both for individuals’ 
fitness and subsequent demographic processes. Yet the nature of  
this variation, and the degree to which it may be shaped by endog-
enous factors (e.g., condition and sex) and exogenous factors (e.g., 
shifting distributions of  resources and increasing energetic demands 
associated with reproduction) remain poorly understood. We found 
that basic foraging metrics of  brown pelicans in the northern Gulf  
of  Mexico did not vary meaningfully across tracked cohorts when 
average values for an individual were assessed. In contrast, behav-
ioral flexibility in foraging behaviors differed considerably between 
individuals across multiple metrics.

First, although the population exhibited a gradual increase in site 
fidelity during tracking periods, we found that individuals in bet-
ter condition exhibited increased variability in the areas in which 
they foraged. This suggests that higher-condition individuals may 
be able to maintain dynamic foraging strategies, despite increas-
ing physiological challenges associated with provisioning growing 
chicks. These patterns cannot be explained by changes in home 
range size, which decreased as chicks increased in age, further 
emphasizing the importance of  spatially explicit considerations in 
characterizations of  foraging behavior. Condition-based differences 
in foraging site fidelity suggest that this population does not follow 
an ideal-free distribution (Fretwell and Lucas 1969), in which indi-
viduals settle into areas proportionally to their resource availability, 
nor do inferior competitors appear to be excluded from resource-
rich patches. Rather, a more exploratory strategy may decrease 
within-patch competition from other pelicans and improve foraging 
efficiency, but may not be energetically feasible for lower-condition 
individuals without risking mortality or nest failure. As such, this 
may represent another example of  a “rich get richer” scenario, 
where individuals continually reap the rewards afforded them by 
better condition, perhaps beginning with and maintaining high for-
aging efficiency by continually locating new patches as others are 
depleted (Lescroël et al. 2010).

Increased variability may be associated with various foraging 
skills, such as landscape-level knowledge of  patches (Irons 1998), 
interpretation and use of  social information at the colony (Ward 
and Zahavi 1973) or on foraging grounds (Thiebault et al. 2014; 
Tremblay et al. 2014), use of  distant fishing vessels to locate large 
schools (Votier et  al. 2010), or exploitation of  regional weather 
patterns or environmental characteristics that improve efficiency 
of  movement over long distances (Wilson et  al. 2012; Shepard 
et  al. 2013). In keeping with this scenario, individuals in better 
condition appeared to expend energy at more consistent rates 
across trips, as measured by ODBA, a proxy of  energy expen-
diture, further lending support to the interpretation that these 
individuals could be accessing better patches that improve their 
rates of  prey capture and therefore offset travel costs. The oppo-
site scenario for lower-condition individuals could also explain 
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their more variable energetic returns as they potentially remain 
in lower-quality foraging areas. However, the overall increase in 
site fidelity we observed in these cohorts suggests that in general, 
the population may gradually locate and revisit more reliable 
foraging grounds, somewhat mitigating the costs associated with 
reduced exploration. Although our findings are consistent with a 
“rich get richer” scenario, additional work is required to better 
understand this system, including continuous measures of  condi-
tion and direct measures of  the energetic returns from different 
foraging patches.

Although our results provide insights into how body condition 
might mediate foraging behavior, several components remain unex-
plored and warrant future investigation. It may be that foraging 
behaviors may carry different energetic costs for different individ-
uals (e.g., less agile dives and greater stability in flight for heavier 
birds), but these assumptions would also suggest that ODBA and 
the resultant proxy measure of  energy expenditure might be lower 
overall for heavier birds, which we did not detect (Supplementary 
Table  3). We also find it unlikely that a bird in better condition 
(i.e., relatively well-fed) would be less agile, given the tactics neces-
sary for this species to successfully target and capture fish. More 
broadly, given the importance of  the dynamic resource landscape 
in the northern Gulf  of  Mexico, variable foraging strategies may 
result in individuals experiencing differential marine conditions 
between years, which may affect rates at which menhaden schools 
are discovered. Direct measures of  energy expenditure and intake 
would also enhance our understanding of  relationships between 
foraging site fidelity and condition-based strategies. Finer-grained 
behavioral data, both on foraging grounds (Thiebault et  al. 2014; 
Tremblay et al. 2014) and on the colony, would help us to resolve 
the degree to which social information use and alternative forag-
ing tactics shape brown pelican foraging strategies and their out-
comes. In tandem with continued collection of  acceleration data, 
this information would allow us to more intimately link strategies to 
their respective energetic efficiencies.

Previous work on the same study population in a single season of  
tracking by Walter et al. (2014) found that body condition was an 
important predictor of  movement between individuals—a pattern 
that we did not recover in the current, multiyear study. This earlier 
study was conducted on birds that renested after transmitter attach-
ment on different barrier islands, limiting our ability to make direct 
comparisons between the 2 studies. We consider it possible that the 
differences between the 2 studies may be explained in part by the 
data used for analysis (round-trip foraging bouts in this study vs. all 
movement data), potentially decreased movement ability of  lower-
condition birds after incurring the cost of  initiating a second nest, 
different regional marine conditions during the 2012 study period, 
the fact that the 2012 birds nested on a wider range of  barrier 
islands, or some combination thereof. Taken together, these 2 track-
ing studies reveal ways in which condition may influence brown 
pelican movement capabilities, with evidence for both a popula-
tion-wide effect from the earlier study and within-individual effects 
in the current study. Better resolving the ways in which individual-
level variance may scale up to population-level trends represents an 
important goal for this and other study systems moving forward.

Our findings underscore the importance of  considering within-
individual variability in behavior, as it may reveal important dif-
ferences between individuals that may not be apparent when only 
between-individual averages are compared (Buss and Greiling 1999; 
Royauté and Dochtermann 2017). This variability may be of  partic-
ular importance when environments are highly dynamic at a variety 

of  spatiotemporal scales, where the capacity for flexible foraging 
strategies could carry important fitness consequences, especially as 
anthropogenic disturbances continually alter ecosystems worldwide 
(Balmford et  al. 2003). Our results also corroborate earlier findings 
that body condition, even if  measured at a single time point, is a 
robust predictor of  many behavioral attributes (Ballard et  al. 2010; 
Walter et al. 2014). We propose that the use of  condition, in tandem 
with other indicators of  individual quality (Patrick and Weimerskirch 
2014), has great potential to explain individual-level variation in 
future studies of  animal movements. As these and other metrics of  
animal movement are gathered in increasing detail, they will con-
tinue to broaden our understanding of  relationships between the 
behaviors of  individuals and consequent population and ecosystem-
level processes.

SUPPLEMENTARY MATERIAL
Supplementary data are available at Behavioral Ecology online.
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